Anti-Selective Vicinal Silaboration and Diboration of Alkynoates through Phosphine Organocatalysis

Kazunori Nagao, Hirohisa Ohmiya,* and Masaya Sawamura*

Department of Chemistry, Faculty of Scienc[e,](#page-3-0) Hokkaido University, Sappor[o](#page-3-0) 060-0810, Japan

S Supporting Information

[AB](#page-3-0)STRACT: [Trialkylphosp](#page-3-0)hine organocatalysts have enabled antiselective vicinal silaboration and diboration of the C−C triple bond in alkynoates to produce β -boryl- α -silyl acrylates and α , β -diboryl acrylates, respectively. The anti stereoselectivity was complete and robust. A variety of functional groups were tolerated in the alkynoates. The two vicinally installed heteroatom substituents of the β-boryl-α-silyl acrylates and α ,β-diboryl acrylates could be

differentiated and transformed in a stepwise manner, allowing the synthesis of a diverse array of unsymmetrical tetrasubstituted alkenes.

Alkenylborons and alkenylsilanes are useful synthetic
intermediates in organic synthesis because of their chemical
stability and their applicability toward various transformations stability and their applicability toward various transformations.¹ 1-Boryl-2-silyl-, 1,2-diboryl-, and 1,2-disilylalkenes are thus likely to represent platforms for the synthesis of various tetrasu[b](#page-3-0)stituted alkenes that are found in many important pharmaceuticals and bioactive natural compounds (Figure 1).² Addition of

$$
\begin{array}{ccc}\nR^1 & BX_2 & R^1 & BX_2 & R^1 \\
\hline\nX_3Si & R^2 & X_2B & R^2 & X_3Si & R^2 & \n\end{array}
$$

Figure 1. Synthesis of tetrasubstituted alkenes.

interelement compounds such as silylborons (Si−B), diborons (B−B), or disilanes (Si−Si) across C−C triple bonds is the most straightforward and attractive method for formation of densely functionalized alkenes.³ Most of the reported alkyne silaborations, diborations, and disilylations occurred in syn addition mode.4−⁸ anti-Selectiv[e](#page-3-0) additions were also reported, but they were rare. For example, Suginome et al. reported the Pdcataly[zed](#page-3-0) anti-selective silaboration of terminal alkynes with silylboronates, but the stereoselectivity was not complete.^{9a} Recently, Uchiyama, Hirano, and co-workers reported the completely anti-selective diboration of the C−C triple bond [in](#page-3-0) propargylic alkoxide anions.^{9b}

We previously developed a nucleophilic phosphine catalysis that promoted anti-selectiv[e c](#page-3-0)arboboration of alkynoates with alkyl-, alkenyl-, or arylboranes to form β -boryl acrylate derivatives.¹⁰ Herein, we report that similar protocols were applicable to the silaboration and diboration of alkynoates, providing [a v](#page-3-0)ersatile and efficient approach to densely functionalized alkenes such as $β$ -boryl-α-silyl acrylates and $α, β$ -diboryl acrylates.¹¹ The *anti*-stereoselectivity was exclusive and robust irrespective of substrate structures. The regioselectivity of the silaborati[on](#page-3-0) across the polar C−C triple bond exhibited inverse electronic demand, with the intrinsically electrophilic B-atom being delivered to the positively charged β -carbon atom of the α , β -unsaturated ester (alkynoate). A variety of functional groups were tolerated in the alkynoates. Importantly, the two vicinally installed heteroatom substituents of the β -boryl- α -silyl acrylates and α , β -diboryl acrylates could be differentiated and transformed in a stepwise manner, allowing the use of these densely functionalized alkenes as a platform for the synthesis of a diverse array of unsymmetrical tetrasubstituted alkenes. The potential of this strategy was demonstrated by molecular transformations toward the synthesis of tamoxifen-type compounds.

It should be noted that bis(pinacolato)diboron and a silylboron reagent $PhMe₂SiB(pin)$ have been used as reagents for protoboration or protosilylation of electron-deficient alkenes under metal-free Lewis base catalyzed conditions.¹² More recently, the chemistry of the Lewis base catalyzed transformation of the interelement compounds has been ex[ten](#page-3-0)ded to diboration and silaboration of the C−C double bonds in styrenes and allylic alcohols. 13 Importantly, however, the vicinal difunctionalization of alkynes under transition-metal-free conditions is still limite[d](#page-3-0) to the Uchiyama's diboration of the propargylic alkoxide anions discussed above.^{9b}

Specifically, the reaction of ethyl 3-phenylpropiolate (2a) (1.1 g, 6 mmol) with $PhMe₂SiB(pin)$ (1a) (1.5[7 g](#page-3-0), 6 mmol) in the presence of PBu₃ (10 mol %) without a solvent at 80 $^{\circ}$ C over 8 h gave β -boryl- α -silyl acrylate 3aa in isomerically pure form in 84% isolated yield (based on 2a; 99% NMR yield; complete conversion of 2a) (eq 1).¹⁴ The Si-B bond addition was completely regioselective and *anti*-stereoselective. The ¹¹B NMR spectrum of 3aa indic[ate](#page-1-0)[d](#page-3-0) that the carbonyl oxygen was coordinated with the boron atom. The $PBu₃$ loading could be reduced to 5 mol % without affecting the yield of 3aa (84%).

The scope of the phosphine-catalyzed silaboration is shown in Table 1. The reaction of $(i-PrO)Me₂SiB(pin)$ (1b) with 2a

Receiv[ed](#page-1-0): January 30, 2015 Published: February 12, 2015

Table 1. Phosphine-Catalyzed Silaboration^a

^aConditions of silaboration reaction: 2, 0.3 mmol; 1, 0.3 mmol; PBu₃, 10 mol %; 80 °C, 8 h. ^bYield of the isolated product (silica gel chromatography). ^{c1}H NMR yield. d^2 **2**i (0.45 mmol) was used.

occurred cleanly without touching the potentially sensitive Si−O bond to give β-boryl-α-alkoxysilyl acrylate 3ba in excellent yield (Table 1, entry 1). Substituted phenylpropiolates (2b−f) with a methoxy, fluoro, ketone, ester, or 2-(dimethylamino)ethoxy group at the *meta-* or *para-position* of the aromatic β -substituent and 2-thienyl-substituted alkynoate (2g) reacted with

PhMe₂SiB(pin) (1a) in high yields (entries 2–7). Alkylsubstituted alkynoates 2h−l also underwent efficient silaboration $(entries 8-12).¹⁵$

The diboration was possible by using a symmetrical diboron compound bis[\(pi](#page-3-0)nacolato)diboron (4a) as a reagent, allowing the selective preparation of *trans-α*, $β$ -diboryl acrylate derivatives (Table 2). For instance, the phosphine-catalyzed diboration of 2a

Table 2. Phosphine-Catalyzed Diboration^a

		cat. PBu ₃	EtO ₂ C Bpin
	4а	+ E tO ₂ C - $-R1$ ═ THF or neat 80 °C, 8 h	P1 pinB 5
	(1 equiv)	2 (1 equiv)	
entry	alkynoate	product	yield (%) ^{b,c}
1 ^d	2a	$\tilde{\mathcal{C}}$ EtO Bpin pinB Ph 5aa Ō	97 (64)
\overline{c}	2 _b	EtO Bpin pinB 5ab OMe	99 (82)
3	2c	EtO- Bpin pinB 5ac	99 (70)
$\overline{4}$	2d	Bpin EtO pinB O 5ad Me	71 (56)
5	2e	O Bpin EtO pinB O 5ae OEt O	83 (70)
6 ^e	2f	EtO Bpin pinB 5af NMe ₂ O	93 (78)
7	2g	o EtO Bpin pinB 5ag	99 (68)
8	2 _h	o Bpin EtO- pinB Me 5ah	55 (55)
9	2i	о EtO Bpin pinB Et Sai	43 (37)

^aConditions of diboration reaction: 2, 0.3 mmol; $4a$, 0.3 mmol; PBu_3 , 10 mol %; THF (0.05 mL, entries 2−5 and 7) or neat (entries 8 and 9), 80 °C, 8 h. $bⁱ$ H NMR yield. Yield of the isolated product is in parentheses (silica gel chromatography; entries 1−5 and 7−9, recrystallization; entry 6). ^c The isolated yield was significantly lower than the ¹ H NMR yield due to material loss during silica gel chromatography or recrystallization. determines a formula space of the extension of α extends to the extension at 6 mmol scale. Reaction at 0.9 mmol scale.

with 4a occurred with complete *anti-stereoselectivity* to afford the corresponding α , β -diboryl acrylate 5aa (entry 1). Neither Batom in 5aa had an interaction with the carbonyl oxygen as indicated by ${}^{11}B$ NMR spectroscopy. The use of bis(neopentylglycolato)diboron or bis(catecholato)diboron instead of 4a resulted in no reaction (data not shown).

Functional groups such as methoxy, fluoro, ketone, ester, and 2-(dimethylamino)ethoxy moieties were tolerated at the meta- or *para-position of the β-substituent in the alkynoates (Table 2,*

entries 2−6). The thiophene-substituted propiolate 2g was a suitable substrate (entry 7). The reaction of alkyl-substituted propiolates such as 2-butynoate 2h and 2-pentynoate 2i gave alkyl-substituted alkenylboranes 5ah and 5ai, respectively, in good yields (entries 8 and 9).¹⁵

A possible catalytic cycle for the silaboration and diboration is illustrated in Figure 2. As p[rop](#page-3-0)osed for the carboboration of

Figure 2. A possible catalytic cycle.

alkynoates with organoboranes,¹⁰ the phosphine catalysis should be initiated by the conjugate addition of $PBu₃$ to the alkynoate 2 with the assistance of Lewis [acid](#page-3-0)ic activation of the carbonyl group to form a zwitterionic allenolate intermediate (A) .¹⁶ The B-atom of the silylboronate (1) or diboron (4) should be a Lewis acid center in the present case. The terminal silyl or boryl [gr](#page-3-0)oups migrate to the sp-hybridized central carbon of the allene moiety to form ylide intermediates $(B1/B2).$ ¹⁷ Next, the ylide carbon of B2 attacks the B-atom bound to the enolate oxygen to form cyclic borate C. Finally, elimination of Bu₃P associated with B-O cleavage affords 3 or 5.

The two vicinally installed heteroatom substituents of the β boryl-α-silyl acrylates and α , β-diboryl acrylates could be differentiated and transformed in a stepwise manner (eqs 2−

4). For example, β-boryl-α-silyl acrylate 3aa underwent Suzuki− Miyaura coupling with 1-bromo-4-fluorobenzene at the boron site $[Pd(OAc)₂$ −DtBPF $(1,1'-bis(di-tert-butylphosphino)$ ferrocene) catalyst/ K_3PO_4] to afford the corresponding trisubstituted alkenylsilane 6aa with excellent yield and complete E selectivity; the C−Si bond remained untouched (eq 2). The obtained 6aa could be derivatized to the trisubstituted alkenyl bromide 7aa without E/Z isomerization.¹⁸

We were delighted to find that the two boron sites in 5aa could be efficiently differentiated for a stepwise [tw](#page-3-0)ofold cross-coupling. Thus, the cross-coupling between the α , β -diboryl acrylate 5aa

and 4-bromoanisole under the influence of a $Pd(OAc)₂$ −DtBPF catalyst and i -Pr₂NEt base occurred selectively at the α -boron site to give alkenylboronate 8aa (83%, E/Z > 99:1), and no diarylation occurred (eq 3).¹⁹ The second arylation with 4bromotoluene $(Z/E > 99:1)$ was possible by subjecting 8aa to the coupli[ng](#page-3-0) conditions using the $Pd(OAc)₂/DtBPF/K₃PO₄$ system: isomerically pure tetrasubstituted alkene 9aa was obtained in good yield (eq 3). The site selectivity in the first cross-coupling favoring $C(\alpha)$ –B bond transformation is likely due to the electron-withdrawing resonance effect of the ester group rendering $C(\beta)$ less nucleophilic. Additionally, the α,β diboryl acrylate 5aa underwent site-selective Rh-catalyzed conjugate addition to tert-butyl acrylate followed by Pd-catalyzed cross-coupling with 4-bromoanisole to produce tetrasubstituted alkene 11aa (eq 4). Overall, these transformations (eqs 2−4) demonstrated the usefulness of the β -boryl- α -silyl acrylates and α , β -diboryl acrylates as precursors to a diverse array of unsymmetrical tetrasubstituted alkenes.

We then used this strategy for molecular transformations toward the synthesis of (Z)-tamoxifen, an antiestrogenic anticancer drug, and its analogues (Scheme 1).²⁰ The Pd-

Scheme 1. Synthesis of Tamoxifen-Type Compo[un](#page-3-0)ds

catalyzed α -selective cross-coupling of the α , β -diboryl acrylate **5af** with an aryl bromide $(Ar^{1}-Br)$ followed by a second coupling with the same or different (hetero)aryl bromide $(Ar^2 - Br)$ afforded the diarylated products 9af-a−d in isomerically pure forms. The reduction of the ester group in **9af-a** $(Ar^1 = Ar^2 = Ph)$ with DIBAL-H produced the alcohol 12af-a. The synthesis of (Z)-tamoxifen from 12af-a was reported previously.^{20c,i,l} Thus, a formal total synthesis of (Z) -tamoxifen was achieved.

In summary, we have developed phosphine-ca[talyze](#page-3-0)d antiselective silaboration and diboration of the C−C triple bond in alkynoates to produce β -boryl- α -silyl acrylates and α , β -diboryl acrylates, respectively. The anti-stereoselectivity was exclusive and robust irrespective of substrate structures. The silaboration across the polar C−C triple bond occurred with inverse electronic demand with regard to the regioselectivity, with the intrinsically electrophilic B-atom being delivered to the positively charged $β$ -C atom. A variety of functional groups were tolerated in the alkynoates. Importantly, the two vicinally installed heteroatom substituents of the β -boryl- α -silyl acrylates and α , β -diboryl acrylates could be differentiated and transformed in a stepwise manner, allowing the use of these densely functionalized alkenes as a platform for the synthesis of a diverse array of unsymmetrical tetrasubstituted alkenes. The power of this strategy was demonstrated by molecular transformations toward the synthesis of tamoxifen-type compounds.

Organic Letters
■ ASSOCIATED CONTENT

6 Supporting Information

Experimental details and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Authors

*E-mail: ohmiya@sci.hokudai.ac.jp. *E-mail: sawamura@sci.hokudai.ac.jp.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Young Scientists (A) and Challenging Exploratory Research, JSPS to H.O. and by CREST, JST to M.S. K.N. thanks JSPS for scholarship support.

■ REFERENCES

(1) (a) Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany, 2005. (b) Brook, M. A. Silicon in Organic, Organometallic and Polymer Chemistry; Wiley: New York, 2000.

(2) For a review on the synthesis of multisubstituted alkenes, see: Flynn, A. B.; Ogilvie, W. W. Chem. Rev. 2007, 107, 4698.

(3) For reviews, see: (a) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3435. (b) Han, L. B.; Tanaka, M. Chem. Commun. 1999, 395. (c) Suginome, M.; Ito, Y. Chem. Rev. 2000, 100, 3221. (d) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320. (e) Ito, Y. J. Organomet. Chem. 1999, 576, 300.

(4) For reviews on silaboration of unsaturated compounds, see: (a) Ohmura, T.; Suginome, M. Bull. Chem. Soc. Jpn. 2009, 82, 29. (b) Oestreich, M.; Hartmann, E.; Mewald, M. Chem. Rev. 2013, 113, 402.

(5) For selected papers on transition-metal-catalyzed syn-selective silaboration with silylborons of alkynes, see: (a) Suginome, M.; Nakamura, H.; Ito, Y. Chem. Commun. 1996, 2777. (b) Suginome, M.; Matsuda, T.; Ito, Y. Organometallics 1998, 17, 5233. (c) Suginome, M.; Matsuda, T.; Nakamura, H.; Ito, Y. Tetrahedron 1999, 55, 8787. (d) Suginome, M.; Noguchi, H.; Hasui, T.; Murakami, M. Bull. Chem. Soc. Jpn. 2005, 78, 323. (e) Ohmura, T.; Oshima, K.; Suginome, M. Organometallics 2013, 32, 2870. (f) Ohmura, T.; Oshima, K.; Taniguchi, H.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 12194. (g) Da Silva, J. C. A.; Birot, M.; Pillot, J.-P.; Pétraud, M. J. Organomet. Chem. 2002, 646, 179. (h) Jiao, J.; Nakajima, K.; Nishihara, Y. Org. Lett. 2013, 15, 3294. (i) Saito, N.; Saito, K.; Sato, H.; Sato, Y. Adv. Synth. Catal. 2013, 355, 853. (j) Zhou, H.; Moberg, C. J. Am. Chem. Soc. 2012, 134, 15992. (k) Gryparis, C.; Stratakis, M. Org. Lett. 2014, 16, 1430.

(6) For reviews on diboration of unsaturated compounds, see: (a) Marder, T. B.; Norman, N. C. Top. Catal. 1998, 5, 63. (b) Irvine, G. J.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.; Rice, C. R.; Robins, E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J. Chem. Rev. 1998, 98, 2685. (c) Takaya, J.; Iwasawa, N. ACS Catal. 2012, 2, 1993.

(7) For selected papers on transition-metal-catalyzed syn-selective diboration with diborons of alkynes, see: (a) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 11018. (b) Ishiyama, T.; Matsuda, N.; Murata, M.; Ozawa, F.; Suzuki, A.; Miyaura, N. Organometallics 1996, 15, 713. (c) Lesley, G.; Nguyen, P.; Taylor, N. J.; Marder, T. B.; Scott, A. J.; Clegg, W.; Norman, N. C. Organometallics 1996, 15, 5137. (d) Thomas, R. L.; Souza, F. E. S.; Marder, T. B. J. Chem. Soc., Dalton Trans. 2001, 1650. (e) Hyodo, K.; Suetsugu, M.; Nishihara, Y. Org. Lett. 2014, 16, 440. (f) Iwadate, N.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 2548. (g) Lillo, V.; Fructos, M. R.; Ramírez, J.; Braga, A. A. C.; Maseras, F.; Díaz-Requejo, M. M.; Pérez, P. J.; Fernández, E. Chem.Eur. J. 2007, 13, 2614. (h) Yoshida, H.; Kawashima, S.; Takemoto, Y.; Okada, K.; Ohshita, J.; Takaki, K. Angew. Chem., Int. Ed.

2012, 51, 235. (i) Chen, Q.; Zhao, J.; Ishikawa, Y.; Asao, N.; Yamamoto, Y.; Jin, T. Org. Lett. 2013, 15, 5766. (j) Iverson, C. N.; Smith, M. R., III. Organometallics 1996, 15, 5155.(k) Adams, C. J.; Baber, R. A.; Batsanov, A. S.; Bramham, G.; Charmant, J. P. H.; Haddow, M. F.; Howard, J. A. K.; Lam, W. H.; Lin, Z.; Marder, T. B.; Norman, N. C.; Orpen, A. G. Dalton Trans. 2006, 1370.

(8) For a review on disilylation of unsaturated compounds, see: Suginome, M.; Ito, Y. J. Organomet. Chem. 2003, 685, 218.

(9) (a) Ohmura, T.; Oshima, K.; Suginome, M. Chem. Commun. 2008, 1416. (b) Nagashima, Y.; Hirano, K.; Takita, R.; Uchiyama, M. J. Am. Chem. Soc. 2014, 136, 8532.

(10) Nagao, K.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2014, 136, 10605.

(11) For recent papers on Cu-catalyzed β -silylation of alkynoates with the silylboron reagent, see: (a) Xu, Y.-H.; Wu, L.-H.; Wang, J.; Loh, T.-P. Chem. Commun. 2014, 50, 7195. (b) Calderone, J. A.; Santos, W. L. Angew. Chem., Int. Ed. 2014, 53, 4154. (c) Linstadt, R. T. H.; Peterson, C. A.; Lippincott, D. J.; Jette, C. I.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2014, 53, 4159. (d) Vercruysse, S.; Cornelissen, L.; Nahra, F.; Collard, L.; Riant, O. Chem.-Eur. J. 2014, 20, 1834.

(12) (a) O'Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7712. (b) Lee, K.-S.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 7253. (c) Wu, H.; Radomkit, S.; O'Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 8277. (d) Bonet, A.; Gulyás, H.; Fernández, E. Angew. Chem., Int. Ed. 2010, 49, 5130. (e) Pubill-Ulldemolins, C.; Bonet, A.; Bo, C.; Gulyás, H.; Fernández, E. Chem.-Eur. J. 2012, 18, 1121. (f) Pubill-Ulldemolins, C.; Bonet, A.; Gulyás, H.; Bo, C.; Fernández, E. Org. Biomol. Chem. 2012, 10, 9677. (g) Bonet, A.; Pubill-Ulldemolins, C.; Bo, C.; Gulyás, H.; Fernández, E. Angew. Chem., Int. Ed. 2011, 50, 7158. (h) Bonet, A.; Sole, C.; Gulyás, H.; Fernández, E. Org. Biomol. Chem. 2012, 10, 6621.

(13) (a) Ito, H.; Horita, Y.; Yamamoto, E. Chem. Commun. 2012, 48, 8006. (b) Blaisdell, T. P.; Caya, T. C.; Zhang, L.; Sanz-Marco, A.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 9264−9267.

(14) Catalyst screening revealed that phosphines were useful, PBu₃ being the most effective. See Supporting Information for catalyst effects. (15) For Table 1, entries 8−12 and Table 2, entries 8 and 9, unreacted alkynoate was detected in the crude materials.

(16) For reviews on nucleophilic catalysis by phosphines, see: (a) Methot, J. [L.;](#page-1-0) Roush, W. R. Adv. Sy[nth](#page-1-0). Catal. 2004, 346, 1035. (b) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140. (c) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535. For a review on Lewis base catalysis in organic synthesis, see: (d) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560.

(17) Hata, T.; Kitagawa, H.; Masai, H.; Kurahashi, T.; Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2001, 40, 790.

(18) Miller, R. B.; McGarvey, G. J. Org. Chem. 1978, 43, 4424.

(19) Lipshutz, B. H.; Bošković, Z. V.; Aue, D. H. Angew. Chem., Int. Ed. 2008, 47, 10183.

(20) For syntheses of tamoxifen, see: (a) Millar, R. B.; Al-Hassan, M. I. J. Org. Chem. 1985, 50, 2121. (b) Potter, G. A.; McCague, R. J. Org. Chem. 1990, 55, 6184. (c) Brown, S. D.; Armstrong, R. W. J. Org. Chem. 1997, 62, 7076. (d) Stü demann, T.; Knochel, P. Angew. Chem., Int. Ed. 1997, 36, 93. (e) Tessier, P. E.; Penwell, A. J.; Souza, F. E. S.; Fallis, A. G. Org. Lett. 2003, 5, 2989. (f) Itami, K.; Kamei, T.; Yoshida, J.-i. J. Am. Chem. Soc. 2003, 125, 14670. (g) Shimizu, M.; Nakamaki, C.; Shimono, K.; Schelper, M.; Kurahashi, T.; Hiyama, T. J. Am. Chem. Soc. 2005, 127, 12506. (h) Zhou, C.; Larock, R. C. J. Org. Chem. 2005, 70, 3765. (i) Shimizu, K.; Takimoto, M.; Mori, M.; Sato, Y. Synlett 2006, 3182. (j) Nishihara, Y.; Miyasaka, M.; Okamoto, M.; Takahashi, H.; Inoue, E.; Tanemura, K.; Takagi, K. J. Am. Chem. Soc. 2007, 129, 12634. (k) Ishida, N.; Shimamoto, Y.; Murakami, M. Org. Lett. 2009, 11, 5434. (l) He, Z.; Kirchberg, S.; Fröhlich, R.; Studer, A. *Angew. Chem., Int. Ed.* **2012**, 51, 3699.